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A Distributed Markovian Parking Assist System
Mingming Liu , Joe Naoum-Sawaya , Yingqi Gu, Freddy Lecue, and Robert Shorten

Abstract— This paper proposes a congestion balancing parking
guidance system that suggests to a driver a sequence of streets to
follow around the desired destination with the aim to reduce the
total distance that is travelled while searching for a free parking
spot. The system requires only limited infrastructure information,
and neither requires parking spaces to be instrumented, nor
vehicles to communicate with each other. Specifically, the system
utilizes parking vacancy information on each street. The system
also accounts for the added cost of not finding a free space, which
is typically expressed as the additional distance that needs to be
travelled to find an available parking spot. To avoid local con-
gestion, different drivers respond to different suggestions based
on a probability distribution that considers the total distance
that needs to be travelled. A mobility simulator is used to model
the searching behaviors of vehicles for parking spaces with and
without the smart parking algorithm and experimental results are
provided using the road network of the city of Dublin, Ireland.

Index Terms— Parking assist system, distributed control,
intelligent transportation system.

I. INTRODUCTION

SYSTEMS to assist drivers when looking for a parking
space are currently a topic of great interest in a number

of academic disciplines [1]. Apart from being of great practical
utility, such systems offer great potential in reducing on-street
congestion, energy consumption and pollution, in our cities.
For instance, [2] indicated in a case study on a small business
district in Los Angeles that 730 tons of carbon dioxide where
produced and 47,000 gals of gasoline were burned in a year
by cars searching for parking. Similarly, another case study
by McKinsey [3] reported that the average car owner in Paris
for example spends four years of his life searching for parking
spaces. Note that in the context of electric vehicles, the cost
of searching of parking spaces is exaggerated due to the high
marginal cost of wasting battery power. Thus parking guidance
systems are becoming an essential part of future sustainable
cities.
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At present, a number of different parking guidance systems
are available around the world. The most common are infor-
mation boards displaying the available parking spots at var-
ious locations around the city. While the information boards
provide valuable guidance to the drivers to avoid areas with
potentially limited parking space availability, these systems
often lead to localised congestion around areas that have the
largest number of available spaces. This is typically due to
the fact that all drivers are going to receive identical parking
guidance information and it is expected that many drivers
choose to go to the areas with a large number of parking spaces
which in turn leads to localised congestion of vehicles and an
increasing amount of air pollutants in local areas. In contrast
to displaying limited information on public boards, advanced
systems can provide extensive parking guidance information
directly to the drivers either to their mobile devices or to the
car. The wealth of information about the parking spaces is
provided through the use of an extensive infrastructure that
includes sensors that are typically embedded in the streets
to monitor the availability of the individual parking spaces.
Furthermore, with the deployment of sensors that monitor
parking spaces, dynamic pricing of parking spaces has become
more widespread in cities as well (e.g. sfpark.org). Such
systems thus provide to the drivers the exact location of the
currently free parking spaces along with their respective prices.

In this paper, we mainly describe an approach to guide the
drivers that are searching for on-street parking spaces. Rather
than assuming that individual parking spaces are instrumented,
we assume that rough, course gained information, about the
availability of spaces in a given area, is available. Specifically,
the proposed system mainly requires the availability of
information about the probability of finding parking spaces
on the streets. Such information is actually readily available
can be obtained from the historical data of smart parking
meters that are already available in many major cities around
the world or it can be evaluated in real time based of flow rate
information from loop counters. Thus the proposed system
architecture only requires broadcast infrastructure to transmit
such probability values, which can easily be enabled through
the mobile phones of the drivers or the devices inside the
cars. Given such probability values, local in-car computations
are then used to suggest to drivers a sequence of the following
streets that they should traverse while searching for parking in
order to maximize the expected likelihood of finding a parking
space. The embodiment of the system described is based
on ant colonies optimization which are used to estimate the
probabilities of finding a parking space on a particular path.

The remainder of this paper is organized as follows. Related
works are provided in Section II. A detailed description of
the system model along with the parking search algorithm
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that is based on an colony optimization are discussed in
Section III. The system architecture and implementations
based on historical parking data in Dublin city are presented
in Section IV. Implementations of the proposed algorithm
in the Simulation of Urban MObility (SUMO) packages are
discussed in Section V. Finally, a conclusion along with
potential future research directions are provided in Section VII.

II. RELATED WORK

Several papers in the literature have discussed parking
guidance systems. The commonality among these systems is
in providing information to the drivers on the availability of
parking places. The focus of such systems can be characterized
in two main directions: information collection, and information
processing and dissemination.

Information collection is typically based on using the
existing infrastructure such as parking meters [4] to predict
parking availability. The parking meter data offers rich
information that include the street location of the meter where
tickets have been bought, the time and date in which tickets
have been bought, and the payment amount which indicates
the parking duration. From parking meter data, aggregate
information on car arrival rates and departure rates and thus
expected parking availability can be estimated. While data
from parking meters can provide rich insights on parking
availability based on existing infrastructure, more accurate
information can be obtained by more advanced systems which
are often expensive which limits their widespread availability.
These systems include in-road sensors or ultrasonic sensors in
parking spaces [5]. Such systems offer real-time monitoring
and can indicate the exact locations of available parking
spaces and can provide very accurate information on car
arrival and departure rates and expected parking availability.
Crowdsourcing has also been increasingly becoming a
common source for parking information [6], [7]. Systems
that either rely on user input or smartphone sensors may be
used to report parking spots while providing incentives to the
contributors of accurate information. The data collection can
also be coupled with prediction models to further improve
the accuracy of the parking availability forecasts [8].

Information processing deals with the fundamental analyt-
ics to process the collected parking information and derive
insights for a parking guidance system. For instance, an opti-
mization model is proposed in [9] to determine the optimal
information to display on parking information boards so as
to minimize queue lengths and vehicle travel. Reference [10]
proposed a fuzzy logic based approach coupled with inte-
ger programming to design a system to accept or reject
parking reservation taking into account vehicle arrival rates.
Reference [11] showed that the display of real-time parking
availability information reduces the search time of vehicles for
parking spaces while [12] developed an optimization model
to manipulate the parking signals that are sent to the drivers
such as parking availability information with the objective
of reducing the time and distances involved in finding a
parking-place. Furthermore, [13] highlighted the importance
of the parking assignment models in spreading the demand
for parking among the available parking spaces to avoid queue

buildup. Recently, [14] proposed a system for allocating and
reserving parking spaces based on factors that include driving
distance to the allocated space, walking distance to the desired
destination, parking cost, and the expected traffic congestion.
Besides parking guidance systems, other models focus on
extracting the factors that affect parking choice [15] while
problems in road design such as the allocation of parking
spaces to lanes and their impact on travel times and traffic
flow have also been investigated [16].

In this paper, we focus on designing a parking guidance
system for on-street parking. A main characteristic of the
proposed system is that rather than reserving a particular spot
for a vehicle that is requesting a parking which is challenging
in practice due to enforcement and infrastructure investment,
the proposed system provides to the drivers the sequence of
the streets to follow to maximize the likelihood of finding
a parking space. The novelty of the proposed system is in
using the ant colonies metaheuristic to estimate the relative
probability of finding a parking space if a driver follows a
particular street. The model description and the metaheuristic
are described in the following section.

III. MODEL AND ALGORITHM

The general characteristic of a parking guidance system is
that it should be capable to guide vehicles that are simulta-
neously searching for parking spaces while ensuring fairness
among them. In the context of this paper, by fairness we
mean that the risk of taking a low probability route (where
probability refers to the likelihood of finding a parking space)
is in some sense equalized between the searching vehicles.
The focus of the system that is proposed in this paper is on
street-side parking. As opposed to other systems that focus on
parking lots (see [14] for a comprehensive survey), reserving
street-side parking for a vehicle that did not arrive yet is
generally hard to apply in practice mainly due to the significant
investment to instrument the streets. In this paper, we focus
on the design of an on-street parking guidance system that
recommends a sequence of streets to follow to each driver
based on a probability distribution that considers the total
distance that needs to be travelled before finding a free parking
space. This difference is important as it shows that our system
does not require strict parking reservation services.

A. Model Description

Our objective is to find an algorithm that recommends to
each driver a sequence of streets to follow in order to maximize
the probability along the path in which a free parking space
can be found.

To develop this algorithm we require, for each street,
the probability of a car finding a parking space and the length
of each street. Such statistics can be estimated in many ways.
For example from knowledge of total number of parking
spaces on a particular street and traffic flow information,
from instrumented parking spaces, or from networked data
from individual vehicles.

We represent the road network model as a directed graph
G(V , E) where the edges E represent the road segments and
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the vertices V represent the intersections. Each edge i ∈ E
is associated with a cost ci that is proportional to the cost of
not finding a parking on the road segment i . In particular, let
ci denote the length of road segment i (since the vehicle has
to travel the whole road segment i if a parking spot is not
found on i ). We assume that each vehicle is equipped with
a communication device (e.g., a mobile phone with access to
WiFi/LTE networks) which is able to receive a limited amount
of information from the infrastructure.

Let k ∈ {1, 2, . . .} be a discrete point in time in which new
information from the infrastructure can be received and let N
denote the total number of vehicles. For each segment i ∈ E ,
let Ni (k) denote total number of vehicles that are driving on
road segment i at time k. In addition, we assume that each
vehicle has a probability q of being a vehicle that is searching
for a parking space. This probability is assumed to be the
same for all the vehicles and can potentially be estimated from
historical data. Let Ai (k) be the number of available parking
spaces on road segment i at time k, we can then calculate
the probability of finding at least one parking space on road
segment i , say pi (k), for a vehicle that is looking for parking
on that road segment at time k as follows:

pi(k) =

⎧
⎪⎨

⎪⎩

0, if Ai (k) = 0,

1, if Ai (k) > Ni (k),

p̃i(k), if 0 < Ai (k) ≤ Ni (k)

(1)

where p̃i(k) is defined as

p̃i (k) =
Ai (k)−1∑

m=0

(
Ni (k)

m

)

qm(1 − q)(Ni (k)−m). (2)

The proposed guidance system recommends to a vehicle the
next street to follow. Thus the street that is recommended next
should not only be based on the probability of not finding a
parking spot on that street only but should rather consider the
fact that the vehicle might need to travel the full street if no
parking spot is found. Thus the cost of not finding a parking
space on the recommended street should not be too high, i.e.
would not require long detours to find a parking space. Thus
in the following section, we propose an approach that accounts
for the probabilities of finding/not finding a parking spot along
with the travel distances.

B. Ant Colony Optimization

Ideally, all the different paths can be enumerated and
the probability of finding a parking space and the corre-
sponding cost are calculated, however this is computationally
intractable. Searching for a parking space can be characterized
similarly to other activities occurring in nature such as ants
searching for a path between their colony and a source of
food. Particularly, ant colony optimization is a well known
probabilistic swarm intelligence optimization technique that
has been successful in dealing with the problems of finding
good paths through graphs [17], [18]. The basic idea is that
ants wander until they find a source of food and then return
home while laying down pheromone. Other ants are likely
to follow the pheromone trail and reinforce the pheromone

concentration while returning home after finding a food source.
Since pheromone evaporates, then the pheromone density is
higher the shorter the path is from the food source. For the
parking space search, a food source represents an available
parking space and the ant home location is the current location
of the vehicle. The attractiveness of a car to follow a particular
path is then proportional to the amount of pheromone on that
path. Thus an ant colonies search approach can be constructed
by simulating a large number of ants that start from the home
location and travel on the road networks graph G(V , E) until
they find a parking spot. The amount of pheromone that is
deposited by each ant on the traveled path is proportional to the
travel distance of the ant from the home location. Particularly,
the pheromone level fi at edge i is updated as follows

fi (k + 1) = ρ fi (k) + λ
1

path length
(3)

where ρ is a decay factor parameter and λ is a pheromone
strength parameter. Both parameters can be adjusted
empirically to potentially improve the performance of the
ant colony optimization. The path length is the total distance
that is travelled by an ant from the source location until
an available parking the spot is found, i.e. the sum of the
distances of all the edges that are traversed by the ant.
As detailed in Section III-A, the length of each edge i that
is travelled by the ant is ci and the probability of finding at
least one parking spot on edge i is pi(k). A sketch of the ant
colonies search algorithm is as follows

For Algorithm 1 to be executed, we assume that the para-
meters Ni (k), q , Ai (k) are available at every intersection of
the road network and thus before Algorithm 1 is executed.
While, we assume that q is constant and is estimated from
past data, the number of vehicles Ni (k) that are on a road
segment i along with the available parking spots Ai (k) need
to be updated in real-time, i.e. at every time period k.

By running Algorithm 1, the resulting pheromone levels at
each of the links indicate the attractiveness of this link for

Algorithm 1 Ant Colony Optimisation (ACO) Algorithm
1: Initialisation:
2: Set the time limit T ;
3: Initialise the pheromone level fi = 1,∀i ∈ E ;
4: Generate Q number of ants and set the current position of

each ant to the home location;
5: At each node j ∈ V , let M j be the set of edges that are

connected to node j ;
6: Let ai j denote the probability of moving an ant at node j

through edge i and set qi j = fi∑
k∈N( j) fk

∀i ∈ E, ∀ j ∈ V ;

7: while total time is less than T do
8: for every ant in Q do
9: Select an edge i from M j based on qi j ;

10: Absorb the ant on edge i with a probability pi(k);
11: if the ant is absorbed then
12: Update fi for all edges traversed by the ant;
13: end if
14: end for
15: end while
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finding a parking space. The following section proposes a fair
signaling for vehicle guidance based on pheromone levels.

C. Fairness Through Signaling

As discussed earlier, a main advantage of parking guidance
systems is to alleviate the congestion that is due to vehicles
searching for parking in the same areas which results from the
drivers receiving the same signal either by visually observing
the streets or based on drivers’ perception of the availability
of parking spots. To alleviate the congestion, different signals
may need to be sent to different drivers although they are
searching for a parking spot at the same time and place.

The differentiating signaling is inherent to the guidance
system that is proposed in this paper and directly results
from the application of Algorithm 1. Particularly, given a
vehicle currently at node j , the potential streets that can be
travelled next by the vehicle are M j with each street i ∈ M j
associated with an attractiveness level fi as determined by
Algorithm 1. Therefore, a signal advising the driver to take
street i ∈ M j is generated with a probability qi j = fi∑

h∈M j
fh

which balances the flow of vehicles to the different streets
according to the attractiveness of each street. We note that
the proposed signaling strategy is essentially a Markovian
signaling strategy. It assumes that drivers honestly respond
to recommendations.

The proposed system as described requires considerable
information; for example, the number of available parking
spaces on each street, the number of drivers searching for
parking spaces, and the probability that individual will park
at a space he/she detects it. We make these assumptions to
develop our model and setup our simulations. Knowing that
the availability of such information might not be feasible
in practice, Section VI presents results on coarse-grained
information that is actually available from the infrastructure,
particularly from the smart parking meters that in the City of
Dublin.

IV. SYSTEM IMPLEMENTATION

In this section we discuss the system implementation and
the experimental testing. We use the road network from
Dublin, Ireland that is obtained from OpenStreetMaps [19] and
contains a total of 165646 nodes representing the intersections
and 201145 edges representing the road segments (The data
can be obtained by contacting the authors).

A. System Architecture

The proposed parking guidance system is implemented in
python and is composed of three modules. The first module
deals with generating the graph G(V , E) based on finding
all the nodes and edges that are within a limited distance
around a particular point of interest that is specified using
GPS coordinates. In our experimental testing, we consider a
maximum distance of 500 meters. The user thus specifies the
GPS location of the desired final destination which is then
mapped to the nearest node in the OpenStreetMaps data which
is designated as the source node for the ant search algorithm.

Fig. 1. Schematic diagram of the proposed system architecture.

A depth first search is then executed on the OpenStreetMaps
data starting from the source location to find all the nodes that
are within 500 meters from the source node. Those nodes are
then the set of nodes V . All the edges that connect the nodes
in V then constitute the edge set E of the graph G(V , E).
The second and main module of the system is the ant search
algorithm (Algorithm 1) which is called after the generation
of the graph G(V , E).

In our implementation the ant search algorithm is set to run
for 30 seconds of CPU time which we believe is adequate for
ensuring a good user experience and thus the need to limit the
delay between the request for parking and the start of the guid-
ance instructions. After running Algorithm 1 and obtaining the
pheromone levels which are translated to probabilities as dis-
cussed in Section III-C, Module 3 of the system tracks the user
location and provides the guidance instructions. In the actual
system implementation, once the a guidance signal is provided
to the user, the user location and moving directions are tracked
and mapped to the next node on route and Algorithm 1 is
rerun to compute new probabilities for the next intersection
which will then be used if a parking spot is not found on
the current edge. The system architecture is shown in Fig. 1.
The main architecture requirements are graph computation,
fast data management, and easy deployment and integration.
For that, the relational database HSQLDB was chosen since
it offers small fast multithreaded and transactional database
engine. The process starts when the user requests a parking
spot around a particular location. Module 1 then reads the city
map from the database and generates the search area and the
associated graph G(V , E) which is then passed to Module 2
which computes the attractiveness levels of the roads and the
associated probabilities that are then passed to Module 3.
Module 3 then tracks the user location and recommends a
particular street to follow.

V. SUMO SIMULATIONS

In this section we discuss our system implementation in
a dynamic simulation environment using a traffic simulator
SUMO [20]. SUMO is an open source, microscopic road
traffic simulation software package developed by the insti-
tute of transportation systems at the German Aerospace
Centre (DLR) [20]. We use SUMO to evaluate the performance
of our system in different scenarios.
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Fig. 2. Tested road network in Dublin city, Ireland.

TABLE I

SIMULATION PARAMETERS

A. Simulation Setup in SUMO

In this part we evaluate the performance of our algorithm
in a realistic traffic scenario in Dublin city, where the mobility
of all vehicles is simulated in SUMO. The road network
of interest was chosen from an area in the south of Dublin
and the network was imported from OpenStreetMap and
loaded in SUMO for further simulation and analysis. The
diagram of our tested road network is shown in Fig. 2. The
Current Street refers to the street that a vehicle is currently
traveling while the Adjacent Streets denote the streets that
a vehicle can take after arriving to the end of the current
street. We note that on some streets it might be possible to
go back in the opposite direction as illustrated in Fig. 2 where
the current street leads to three adjacent streets. A summary
of the simulation parameters is provided in Table I. In the
simulations, we assumed that there are 200 vehicles in the
area looking for free parking spaces with probability q = 0.5.
The total number of available parking spaces facilitated in the
network is varied between 10 and 50 representing different
scenarios. In each scenario, the locations of the free parking
spaces are randomly distributed on the road segments at the
beginning of the simulation. We also assume that once a
vehicle finds a parking space it will be removed from the
network, and at the same time a previously occupied parking
space is chosen at random and is released (i.e., becomes a free
parking space). Additionally a new vehicle is then generated
into the network, and we assume that the new vehicle starts
from the same starting position of the vehicle that just parked.
Accordingly, the number of free parking spaces in the network

Fig. 3. Averaged routing distance of vehicles with different percentage of
vehicles running the algorithm.

and the number of vehicles that are searching for a parking
spot is always constant. Using this approach, we can easily
evaluate the statistical performance of the system based on all
the vehicles’ trips.

B. Simulation Results in SUMO

In this section we discuss our simulation results. For com-
parison, we consider four different setups: 1). All vehicles
implementing the proposed smart parking algorithm; 2). All
vehicles are randomly routed without using the smart parking
algorithm; 3). A fraction of vehicles implementing the smart
parking algorithm (i.e., the rest are randomly routed); and
4). All vehicles implementing the smart parking algorithm but
without congestion signaling (i.e. the vehicles are all routed
on the street with highest qi j ). The performance of the system
is evaluated in terms of the vehicles’ travel distance and the
environmental impact. In our study, the simulation time of
each scenario is set to 10000 time steps (each time step
is 1 second).

The simulation results are presented in Figs. 3 - 5. Fig. 3
shows the average travel distance with respect to different
percentage of vehicles running the smart parking algorithm
with 10 parking spaces available. We notice that, the travel
distance is significantly higher for the vehicles that are not
running the smart parking algorithm (green bar) compared
to those that are using the proposed approach (blue bar).
Particularly, when 20% of the vehicles are using the proposed
smart parking, the average travel distance is 33% less. When
all the vehicles are searching randomly, the average travel
distance is 2637 meters while this distance decreases to
2056 meters when all the vehicles use the proposed smart
parking approach (22% less). Fig. 3 also shows that the
average distance travelled by the vehicles using the smart
parking approach increases as the fraction of these vehicles
increases. This is rather expected since more vehicles will lead
to increased competition for parking. However this increase
is still far smaller than the overall gain in distance travelled,
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Fig. 4. Averaged routing distance of vehicles with different number of
available parking spaces in different setups.

and the aggregate average travel distance decreases as more
vehicles use the proposed smart parking approach (yellow bar).

For the results that are shown in Fig.4, we conduct three
different simulations with different parking search algorithms.
In the first (blue bar), all the 200 vehicles are randomly
searching for a free parking spot. In the second (green bar), all
the vehicles are using the smart algorithm without congestion
signaling and finally in the third scenario (yellow bar), all the
vehicles are using the smart algorithm with congestion signal-
ing. Fig.4 shows the change in average distance travelled as the
number of available parking spaces increases from 10 to 50
and illustrates the value of congestion signaling. While the
distance travelled decreases when the smart algorithm is used
by the vehicles, we notice that congestion signaling where the
vehicles are randomly routed according to the probabilities
that are calculated by the ACO algorithm leads to a decrease
in travel distance compared to the cases where the vehicles are
always routed to the street with the highest probability. This is
indeed expected since the vehicles are missing on the parking
spaces that are available on the streets with lower probabilities
and thus accordingly balancing the routing of vehicles leads
to better performance. Finally, as expected, Fig.4 shows that
the benefit of using the smart parking approach decreases
as the number of available parking spaces increases thus the
need for smart parking systems in highly congested cities. The
proposed smart parking algorithm also balances the probability
of finding a parking space on the street of the networks.
To illustrate this, we compute the probability of finding a
parking space according to Eq. (1) for the three adjacent streets
that are the center of the map (see Fig. 2). The evolution of
these probabilities with the simulation time is shown in Fig. 5.
We notice that the probabilities for the three streets converge to
similar values as the simulation progresses and thus showing
the value of the proposed congestion balancing approach.

VI. HISTORICAL PARKING DATA

The previous sections illustrated the efficacy of our algo-
rithm. To further illustrate the value of the proposed smart
parking approach, we use real data obtained from smart

Fig. 5. Evolution of pi (k) for all connected adjacent streets of a street in
centre.

Fig. 6. Parking occupancy heat maps at 7:00-7:30.

parking meters from the City of Dublin [21] to further evaluate
the proposed approach.

In the area of interest there are 365 smart parking meters that
report detailed transaction records that include time of transac-
tion, parking duration, and the total number of parking spaces.
We thus obtained the transaction records for the months of
October and November 2015 and only used weekday data
from 7:00 until 17:00 during which the parking meters are
active. The time horizon is then split into 30 minutes time
periods and the average number of parked cars during each
of the 30 minutes time periods is calculated. Figs. 6 - 9
show snapshots of the number of parked cars in Dublin city
at different time of the day. The darker color indicates the
higher number of occupied parking spaces. It is evident that
the busiest areas of Dublin city are in the city center as shown
in the coverage maps.

A. Experimental Testing

To demonstrate the proposed parking guidance, we con-
sider a case where a vehicle is looking for a parking space
around its current location at 17 Wellington Road in Dublin.
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Fig. 7. Parking occupancy heat maps at 11:00-11:30.

Fig. 8. Parking occupancy heat maps at 14:30-15:00.

Fig. 9. Parking occupancy heat maps at 16:30-17:00.

The exact location is shown in Fig. 10. The corresponding
graph G(V , E), which indicates the streets that are within the
desired distance, is constructed as discussed in Section IV-A
and is shown in Fig. 11. Given the vehicle’s current loca-
tion, two options are possible, either continue on Wellington

Fig. 10. Parking search example: roads map.

Fig. 11. Parking search example: corresponding graph.

Road or turn on Elgin Road. After running the Ant Search
algorithm proceeding on Wellington Road has a probability
of 77% while Elgin Road has a probability of 23%. Thus to
balance the congestion, the driver will be instructed to proceed
on Wellington Road with a probability of 77% and to proceed
on Elgin Road with a probability of 23%.

Using a 50 randomly selected locations in Dublin, Fig. 12
and Fig. 13 illustrates the impact of the search area radius and
the time limit of Algorithm 1. Fig. 12 reveals an exponential
increase in the average CPU time that is required by the depth
first search algorithm to construct graph G(V , E) as a function
of an increase in the radius of the search area. Nonetheless,
a search radius of up to 1000 meters requires less than 1 second
of CPU time. The search area radius can thus be a parameter
that is set by the vehicle drivers to indicate how far from the
final destination they would be willing to park. Finally, Fig. 13
shows that the majority of the change in the probabilities of
the routing recommendations are due to the first 30 seconds
of computations of Algorithm 1. Increasing the time limit
from 5 seconds to 30 seconds leads to an average change
of 42% in the probabilities while increasing the time limit
from 30 seconds to 35 seconds leads to an average change of
less than 3% on average. Thus the recommendation is to set the
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Fig. 12. Computational performance of the depth-first search as a function
of the search area radius.

Fig. 13. Percentage change in the guidance probabilities as a function of the
time limit of Algorithm 1.

search area of the proposed parking guidance system to less
than 1000 meters and a 30 seconds time limit for Algorithm 1.

It is important to note that the study presented in this
section is based on static parking information. Such a study
is valid only if we assume a decoupling from the parking
density and the operation of the vehicles; namely if only
very few vehicles are operating the algorithm. We note again
that the objective in presenting this data is to illustrate the
computational complexities of the algorithm and that the
algorithm can be implemented using readily available coarse-
grained information. Of course in any real implementation
the algorithm would operate based on dynamically changing
parking information. The effect of communication and routing
delays on the algorithm are beyond the scope of the present
paper.

B. Simulations Based on Historical Data From Dublin

To further evaluate the impact of the proposed parking guid-
ance system, this section presents comprehensive simulation
results using the historical parking occupancy data from the
City of Dublin. Particularly, we evaluate the performance of
the proposed parking guidance system using two traffic density
patterns. The first is a low traffic density with 500 vehicles
while the second is a high traffic density with 1000 vehicles.

Fig. 14. Map of balls bridge area in dublin with the locations of smart
parking meters.

Fig. 15. Comparison of distance travelled to find a parking spot.

Furthermore, we consider that 10% of the vehicles are search-
ing for a parking spot while the remaining vehicles are just
driving through the area. For the vehicles that are searching
for a parking spot, 50% are using the proposed smart parking
guidance system. Futhermore, for each traffic density scenario,
we consider two parking occupancy levels: off-peak which
indicates a low parking occupancy based on the historical data
from the City of Dublin and peak time which indicates high
parking occupancy. The area in Dublin that is considered along
with the actual locations of the smart traffic meters is shown
in Fig. 14. Finally, we assume that once a vehicle parks, that
vehicle will remain parked for the rest of the simulation and
no other parking spot is released. The simulation time is fixed
to 1000 seconds.

The results that are shown in Fig. 15 show that the vehicles
that use the smart parking guidance system travel significantly
less to find a parking spot compared to the remaining vehicles.
Particularly, this difference is larger for the peak hours which
is rather expected since as parking spots become scarce,
the smart guidance leads to increasing benefits while when
several parking spots are available, less guidance is needed to
find a free parking spot. We also note that in both cases of
high and low traffic densities, the reduction in travel distance
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Fig. 16. Comparison of time spent to find a parking spot.

Fig. 17. Number of vehicles looking for parking in peak vs off-peak hours.

is significant when smart guidance is employed with a small
increase in benefit for the case of high traffic density which
is expected due to the increasing demand for parking.

Similar to travel distance, Fig. 16 shows a significant
difference in the amount of time spent to find a free parking
spot between the vehicles that use the smart guidance and
others with the advantage for the guided vehicles. These
results illustrate the value of the proposed guidance system
in reducing travel time and distance which potentially leads to
several societal and environmental benefits.

Finally to illustrate the impact of the proposed guidance
system in peak vs. off-peak hours, Fig. 17 shows the evolution
of the number of vehicles that still did not find a parking spot
after a certain point in time. As shown in Fig. 17, in both cases
of traffic densities, the vehicles that are looking for a parking
spot drops quickly and a majority of the vehicles find a parking
spot in less than 100 seconds with very few vehicles remaining
after 300 seconds of search time. This is a consistent for both
peak and off-peak hours and as expected, vehicles park faster
in off-peak hours.

C. Dynamic Parking Space Availability

In the previous section, we evaluated the performance of our
algorithm based on static parking data. To further illustrate the

Fig. 18. Occupancy rate and parking availability at different time slots of
a day.

efficacy of our proposed algorithm in a more realistic setting,
we now take into account the dynamic changes in the parking
availability during the search process at different time slots
in a day and account for the dynamic changes in the parking
availability during the search process.

Using the historical dataset that was obtained from the City
of Dublin, we estimated the occupancy rate for parking spaces
for 1 hour time periods throughout the day in the Balls Bridge
area of Dublin as well as the number of available parking
spaces. The occupancy rates along and the number of available
parking spots that are summarized in Fig. 18 show that parking
occupancy is at its lowest in morning time periods (7-8am) and
then consistently increases until it peaks in the periods from
12 to 2pm and then decreases with a sharp drop after 4pm.
Not surprisingly, parking occupancy rate coincides with typical
business hours that often start at 8am and end at 4pm. Using
this setup, we obtain statistics on the clearing times of the
vehicles, i.e. the time it takes a vehicle to find a free parking
spot in each interval of the day.

This setup is implemented in SUMO and we assumed that
there are 100 vehicles searching for parking spaces at different
time slots during a day. For each time slot, we fixed the total
number of free spaces on the streets, and we implemented
20 independent simulations. Each simulation is then repeated
twice, once with the vehicles using the proposed parking
search algorithm and a second time with the random search
for parking. Each simulation is terminated when all vehicles
have found parking spots.

The results are summarized in Fig. 19 which illustrates
the average parking time for all vehicles (and error interval).
Fig. 19 shows that the smart parking search algorithm con-
sistently outperforms random search for parking for all the
time periods of the day. Evidently, when the occupancy rate is
low (high number of available parking spaces), the difference
in performance between smart parking search and random
parking search is small. The value of smart parking search
is when parking spots are scarce such as during 12-2pm time
periods. Fig. 20 which shows the difference in average parking
time between random search and smart parking search reveals
that during peak hours, the difference in parking time is about
1 minute per vehicle on average.
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Fig. 19. Comparison of the average parking time for 100 vehicles, with/
without using the smart algorithm, at different time slots of a day.

Fig. 20. Difference in average parking time with/without the smart algorithm.

VII. CONCLUSION

This paper proposes a parking guidance system focusing
on street side parking. As opposed to many advanced systems
that require expensive infrastructure to enforce parking spaces
reservations before vehicles’ arriving, the proposed system
only requires limited information regarding the probability
of finding parking spaces on the streets. Such data can be
obtained either from historical data of smart parking meters
in a relatively static manner, or dynamically through real-time
feedback of probabilities via the increasingly available
infrastructure to vehicle communication. We discuss and
present our system implementations in both cases in the
paper. Finally the recommendations that are relayed to the
drivers account for congestion balancing.

In future work, a spatio-temporal analysis of the various
factors that impact the availability of parking spaces may
improve the outcome of the proposed system in reducing the
amount of time before a parking spot is found. Furthermore,
multi-vehicle collaborative algorithms where a vehicle learns
from the trajectory of other vehicles that are searching for
parking may provide improving performance and will be
enabled through the future availability of vehicle-to-vehicle
communication.
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